Hahn-Banach Type Theorems for Locally Convex Cones
نویسندگان
چکیده
منابع مشابه
Hahn - Banach theorems
The first point here is that convex sets can be separated by linear functionals. Second, continuous linear functionals on subspaces of a locally convex topological vectorspace have continuous extensions to the whole space. Proofs are for real vectorspaces. The complex versions are corollaries. A crucial corollary is that on locally convex topological vectorspaces continuous linear functionals s...
متن کاملOn Hahn-banach Type Theorems for Hilbert C*-modules
We show three Hahn-Banach type extension criteria for (sets of) bounded C*-linear maps of Hilbert C*-modules to the underlying C*-algebras of coefficients. One criterion establishes an alternative description of the property of C*-algebras to be monotone complete or additively complete.
متن کاملThe Noncommutative Hahn-banach Theorems
The Hahn-Banach theorem in its simplest form asserts that a bounded linear functional defined on a subspace of a Banach space can be extended to a linear functional defined everywhere, without increasing its norm. There is an order-theoretic version of this extension theorem (Theorem 0.1 below) that is often more useful in context. The purpose of these lecture notes is to discuss the noncommuta...
متن کاملHahn - Banach theorems for κ - normed spaces
For a new class of topological vector spaces, namely κ-normed spaces, an associated quasisemilinear topological preordered space is defined and investigated. This structure arise naturally from the consideration of a κ-norm, that is a distance function between a point and a G δ-subset. For it, analogs of the Hahn-Banach theorem are proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
سال: 2000
ISSN: 0263-6115
DOI: 10.1017/s1446788700001609